Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
East Afr Health Res J ; 6(1): 52-63, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36424945

RESUMO

Background: Human Respiratory Syncytial Virus (HRSV), Human Parainfluenza Virus (HPIV), and Human Adenovirus (HAdV) epidemics differ in geographical location, time, and virus type. Regions prone to infections can be identified using geographic information systems (GIS) and available methods for detecting spatial and time clusters. We sought to find statistically significant spatial and time clusters of HRSV, HPIV, and HAdV cases in different parts of Kenya. Methods: To analyse retrospective data, we used a geographical information system (GIS) and the spatial scan statistic. The information was gathered from surveillance sites and aggregated at the county level in order to identify purely spatial and Spatio-temporal clusters. To detect the presence of spatial autocorrelation, the local Moran's I test was used. To detect the spatial clusters of HRSV, HPIV, and HAdV cases, we performed the purely spatial scan statistic. Furthermore, space-time clusters were identified using space-time scan statistics. Both spatial and space-time analyses were based on the discrete Poisson model with a pre-specified statistical significance levelof p<0.05. Results: The findings showed that HRSV, HPIV, and HAdV cases had significant autocorrelation within the study areas. Furthermore, in the Western region of the country, the three respiratory viruses had local clusters with significant positive autocorrelation (p<0.05). Statistically, the Western region had significant spatial clusters of HRSV, HPIV, and HAdV occurrence. Furthermore, the space-time analysis revealed that the HPIV primary cluster persisted in the Western region from 2007 to 2013. However, primary clusters of HRSV and HAdV were observed in the Coastal region in 2009-11 and 2008-09, respectively. Conclusion: Human respiratory syncytial virus (HRSV), human parainfluenza virus (HPIV), and human adenovirus (HAdV) hotspots (clusters) occurred in Kenya's Western and Coastal regions from 2007 to 2013. The Western region appeared to be more prone to the occurrence of allthree respiratory viruses throughout the study period. Strategic mitigation should focus on these locations to prevent future clusters of HRSV, HPIV, and HAdV infections that could lead to epidemics.

2.
Influenza Other Respir Viruses ; 16(3): 501-510, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34962085

RESUMO

BACKGROUND: Human respiratory syncytial virus (HRSV) is a major cause of severe viral acute respiratory illness and contributes significantly to severe pneumonia cases in Africa. Little is known about its spatial-temporal distribution as defined by its genetic diversity. METHODS: A retrospective study conducted utilizing archived nasopharyngeal specimens from patients attending outpatient clinics in hospitals located in five demographically and climatically distinct regions of Kenya; Coast, Western, Highlands, Eastern and Nairobi. The viral total RNA was extracted and tested using multiplex real time RT-PCR (reverse transcriptase polymerase chain reaction). A segment of the G-gene was amplified using one-step RT-PCR and sequenced by Sanger di-deoxy method. Bayesian analysis of phylogeny was utilized and subsequently median joining methods for haplotype network reconstruction. RESULTS: Three genotypes of HRSVA were detected; GA5 (14.0%), GA2 (33.1%), and NA1 (52.9%). HRSVA prevalence varied by location from 33% to 13.2% in the Highlands and the Eastern regions respectively. The mean nucleotide diversity (Pi[π]) varied by genotype: highest of 0.018 for GA5 and lowest of 0.005 for NA1. A total of 58 haplotypes were identified (GA5 10; GA2 20; NA1 28). These haplotypes were introduced into the population locally by single haplotypes and additional subsidiary seeds amongst the GA2 and the NA1 haplotypes. CONCLUSIONS: HRSVA was found across all the regions throughout the study period and comprised three genotypes; GA5, GA2, and NA1 genotypes. The genotypes were disproportionately distributed across the regions with GA5 gradually increasing toward the Western zones and decreasing toward the Eastern zones of the country.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Teorema de Bayes , Genótipo , Humanos , Lactente , Quênia/epidemiologia , Filogenia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/genética , Estudos Retrospectivos , Análise de Sequência de DNA
3.
PLoS One ; 16(4): e0249992, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33905425

RESUMO

BACKGROUND: Viruses are responsible for a large proportion of acute respiratory tract infections (ARTIs). Human influenza, parainfluenza, respiratory-syncytial-virus, and adenoviruses are among the leading cause of ARTIs. Epidemiological evidence of those respiratory viruses is limited in the East Africa Community (EAC) region. This review sought to identify the prevalence of respiratory syncytial virus, parainfluenza, and adenoviruses among cases of ARTI in the EAC from 2007 to 2020. METHODS: A literature search was conducted in Medline, Global Index Medicus, and the grey literature from public health institutions and programs in the EAC. Two independent reviewers performed data extraction. We used a random effects model to pool the prevalence estimate across studies. We assessed heterogeneity with the I2 statistic, and Cochran's Q test, and further we did subgroup analysis. This review was registered with PROSPERO under registration number CRD42018110186. RESULTS: A total of 12 studies met the eligibility criteria for the studies documented from 2007 to 2020. The overall pooled prevalence of adenoviruses was 13% (95% confidence interval [CI]: 6-21, N = 28829), respiratory syncytial virus 11% (95% CI: 7-15, N = 22627), and parainfluenza was 9% (95% CI: 7-11, N = 28363). Pooled prevalence of reported ARTIs, all ages, and locality varied in the included studies. Studies among participants with severe acute respiratory disease had a higher pooled prevalence of all the three viruses. Considerable heterogeneity was noted overall and in subgroup analysis. CONCLUSION: Our findings indicate that human adenoviruses, respiratory syncytial virus and parainfluenza virus are prevalent in Kenya, Tanzania, and Uganda. These three respiratory viruses contribute substantially to ARTIs in the EAC, particularly among those with severe disease and those aged five and above.


Assuntos
Infecções por Adenovirus Humanos/epidemiologia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções Respiratórias/epidemiologia , Infecções por Respirovirus/epidemiologia , Infecções por Adenovirus Humanos/patologia , Bases de Dados Factuais , Humanos , Quênia/epidemiologia , Prevalência , Infecções por Vírus Respiratório Sincicial/patologia , Infecções Respiratórias/patologia , Tanzânia/epidemiologia , Uganda/epidemiologia
4.
IJID Reg ; 1: 72-78, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35757823

RESUMO

Background: Human respiratory syncytial viruses (HRSV), human parainfluenza viruses (HPIV), and human adenoviruses (HAdVs) cause a substantial morbidity burden globally. Objective: We sought to estimate morbidity burden, assess seasonality, and determine factors associated with these respiratory viruses in Kenya. Methods: The data were obtained from Kenyan sites included in the Köppen-Geiger climate classification system. We defined the proportion of morbidity burden by descriptive analysis and visualized time-series data for January 2007-December 2013. Logistic regression was used to identify factors associated with infection outcomes. Results: The morbidity burden for HRSV was 3.1%, HPIV 5.3% and HAdVs 3.3%. Infants were more likely to be infected than other age groups. HRSV exhibited seasonality with high occurrence in January-March (odds ratio[OR] = 2.73) and April-June (OR = 3.01). Hot land surface temperature (≥40 °C) was associated with HRSV infections (OR = 2.75), as was warmer air temperature (19-22.9 °C) (OR = 1.68), compared with land surface temperature (<30) and cooler air temperature (<19 °C) respectively. Moderate rainfall (150-200 mm) areas had greater odds of HRSV infection (OR = 1.32) than low rainfall (<150 mm). Conclusion: HRSV, HPIV and HAdVs contributed to morbidity burden, and infants were significantly affected. HRSV had a clear seasonal pattern and were associated with climate parameters, unlike HPIV and HAdVs.

5.
PLoS One ; 15(8): e0237857, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32822390

RESUMO

BACKGROUND: Influenza viruses remain a global threat with the potential to trigger outbreaks and pandemics. Globally, seasonal influenza viruses' mortality range from 291 243-645 832 annually, of which 17% occurs in Sub-Saharan Africa. We sought to estimate the overall prevalence of influenza infections in Kenya, identifying factors influencing the distribution of these infections, and describe trends in occurrence from 2007 to 2013. METHODS: Surveillance was conducted at eight district hospital sites countrywide. Participants who met the case definition for influenza-like illness were enrolled in the surveillance program. The nasopharyngeal specimens were collected from all participants. We tested all specimens for influenza viruses with quantitative reverse transcriptase real-time polymerase chain reaction (RT-qPCR) assay. Bivariate and multivariate log-binomial regression was performed with a statistically significant level of p<0.005. An administrative map of Kenya was used to locate the geographical distribution of surveillance sites in counties. We visualized the monthly trend of influenza viruses with a graph and chart using exponential smoothing at a damping factor of 0.5 over the study period (2007-2013). RESULTS: A total of 17446 participants enrolled in the program. The overall prevalence of influenza viruses was 19% (n = 3230), of which 76% (n = 2449) were type A, 21% (n = 669) type B and 3% (n = 112) A/ B coinfection. Of those with type A, 59% (n = 1451) were not subtyped. Seasonal influenza A/H3N2 was found in 48% (n = 475), influenza A/H1N1/pdm 2009 in 43% (n = 434), and seasonal influenza A/ H1N1 in 9% (n = 88) participants. Both genders were represented, whereas a large proportion of participants 55% were ≤1year age. Influenza prevalence was high, 2 times more in other age categories compared to ≤1year age. Category of occupation other than children and school attendees had a high prevalence of influenza virus (p< <0.001). The monthly trends of influenza viruses' positivity showed no seasonal pattern. Influenza types A and B co-circulated throughout the annual calendar during seven years of the surveillance. CONCLUSIONS: Influenza viruses circulate year-round and occur among children as well as the adult population in Kenya. Occupational and school-based settings showed a higher prevalence of influenza viruses. There were no regular seasonal patterns for influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/epidemiologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Demografia , Monitoramento Epidemiológico , Feminino , Humanos , Lactente , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/genética , Influenza Humana/virologia , Quênia/epidemiologia , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Prevalência
6.
Int J Infect Dis ; 95: 413-420, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32276045

RESUMO

BACKGROUND: Influenza viruses evolve rapidly and cause regular seasonal epidemics in humans challenging effective vaccination. The virus surface HA glycoprotein is the primary target for the host immune response. Here, we investigated the vaccine efficacy and evolution patterns of human influenza A/H3N2 viruses that circulated in Kenyan in the period before and after the 2009 A/H1N1 pandemic, targeting the HA1 domain. MATERIALS AND METHODS: A hundred and fifteen HA sequences of Kenyan virus viruses were analyzed relative to the corresponding WHO vaccine reference strains using bioinformatics approaches. RESULTS: Our analyses revealed varied amino acid substitutions at all the five antigenic sites (A-E) of the HA1 domain, with a majority the changes occurring at sites A and B. The Kenyan A/H3N2 viruses isolated during 2007/2008 seasons belonged to A/Brisbane/10/2007-like viruses lineage, while those circulating in 2009-2012 belonged to the lineage of A/Victoria/361/2011-like viruses. The 2013 viruses clustered in clade 3C.3 of the A/Samara/73/2013-like viruses. The mean evolutionary rate of the A/H3N2 viruses analyzed in the study was at 4.17×10-3 (95% HPD=3.09×10-3-5.31×10-3) nucleotide substitutions per site per year, whereas the TMRCA was estimated at 11.18 (95% HPD=9.00-14.12) years ago from 2013. The prediction of vaccine efficacy revealed modest vaccine efficaciousness during 2008, and 2010 influenza seasons, whilst sub-optimal effectiveness was registered in 2007, 2009, 2012 and 2013. Further, the overall selective pressure acting on the HA1 domain was estimated at 0.56 (ω<1), suggesting that a majority of codon sites in the HA1 epitopes were evolving under purifying selection. CONCLUSIONS: Generally, our results highlight the genetic plasticity of A/H3N2 viruses and reveal considerable disparity in vaccine efficaciousness against the A/H3N2 viruses that circulated in Kenya, specifically during 2007, 2009, 2012, and 2013 influenza seasons. Our findings underscore the importance and need for consistent surveillance and molecular characterization of influenza viruses, to inform decision making and enhance early of detection of strains with epidemic/pandemic potential as well as benefit in guiding decisions regarding the appropriate annual influenza vaccine formulations.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/virologia , Substituição de Aminoácidos , Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Quênia , Filogenia , Domínios Proteicos/imunologia , Estações do Ano
7.
J Int Acad Periodontol ; 20(2): 65-76, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31522145

RESUMO

OBJECTIVE: The aim of this study was to investigate the association between IL-1ß and IL-1α isoforms with chronic periodontitis in two Kenyan ethnic groups, Taitas and Swahilis. METHODS: A case-control study in which participants were assessed for dental plaque, gingival inflammation, pocket depth and gingival recession after informed consent. Buccal swab samples were obtained and deoxyribonucleic acid was isolated from the swabs using QIAamp DNA purification protocol followed by polymerase chain reaction amplification using specific primers to IL-1 α rs1800587 (-889) and rs17561 (+4845) and IL-1ß (rs16944 (-511) and rs11443624 (+3954). Restriction fragment length polymorphisms were recorded and association with clinical data was assessed. RESULTS: Three hundred and ninety participants were recruited; four loci (-511, -889, +3953 and +4845) were analyzed per subject, equivalent to 1560 analysis events. No deviation from Hardy Weinberg equilibrium 1df was observed. Frequency of allele 2 at IL-1ß +3954 was associated with chronic periodontitis in Taitas (OR = 1.94, 95% CI = 1.01 - 3.70, p = 0.045), whereas frequency of allele 1 at IL-1α -889 was associated with chronic periodontitis in Swahilis (OR = 3.16, 95% CI = 1.644 - 6.083, p less than 0.001). Allele 1 at locus IL-1α -889 was also associated with mild, (OR = 5.2, 95% CI = 1.445 - 18.71, p = 0.005), moderate (OR = 4.51, 95% CI = 2.08 - 9.79, p less than 0.001) and severe disease (OR = 2.19, 95% CI = 1.013 - 4.738, p = 0.042) in Swahilis. Haplotype 3 (allele 1 at all four loci) was significantly associated with chronic periodontitis in Taitas (OR = 2.4, 95% CI = 1.1 - 5.14, p = 0.022) and Swahilis (OR = 4.2, 95%CI = 1.35 - 13.3, p = 0.008). CONCLUSIONS: This study has shown that in the African population of Bantu origin, the two polymorphisms associated with chronic periodontitis are IL-1ß +3954 in Taitas and IL-1α-889 in Swahilis. Additionally, haplotype 3 was associated with chronic periodontitis in both ethnic groups.

8.
Springerplus ; 5: 158, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27026855

RESUMO

Enteroviruses (EV) are responsible for a wide range of clinical diseases in humans. Though studied broadly in several regions of the world, the genetic diversity of human enteroviruses (HEV) circulating in the sub-Saharan Africa remains under-documented. In the current study, we molecularly typed 61 HEV strains isolated in Kenya between 2008 and 2011 targeting the 3'-end of the VP1 gene. Viral RNA was extracted from the archived isolates and part of the VP1 gene amplified by RT-PCR, followed by sequence analysis. Twenty-two different EV types were detected. Majority (72.0 %) of these belonged to Enterovirus B species followed by Enterovirus D (21.3 %) and Enterovirus A (6.5 %). The most frequently detected types were Enterovirus-D68 (EV-D68), followed by Coxsackievirus B2 (CV-B2), CV-B1, CV-B4 and CV-B3. Phylogenetic analyses of these viruses revealed that Kenyan CV-B1 isolates were segregated among sequences of global CV-B1 strains. Conversely, the Kenyan CV-B2, CV-B3, CV-B4 and EV-D68 strains generally grouped together with those detected from other countries. Notably, the Kenyan EV-D68 strains largely clustered with sequences of global strains obtained between 2008 and 2010 than those circulating in recent years. Overall, our results indicate that HEV strains belonging to Enterovirus D and Enterovirus B species pre-dominantly circulated and played a significant role in pediatric respiratory infection in Kenya, during the study period. The Kenyan CV-B1 strains were genetically divergent from those circulating in other countries. Phylogenetic clustering of Kenyan EV-D68 strains with sequences of global strains circulating between 2008 and 2010 than those obtained in recent years suggests a high genomic variability associated with the surface protein encoding VP1 gene in these enteroviruses.

9.
Virol J ; 13: 18, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833249

RESUMO

BACKGROUND: Human Coronaviruses (HCoV) are a common cause of respiratory illnesses and are responsible for considerable morbidity and hospitalization across all age groups especially in individuals with compromised immunity. There are six known species of HCoV: HCoV-229E, HCoV-NL63, HCoV-HKU1, HCoV-OC43, MERS-CoV and SARS-HCoV. Although studies have shown evidence of global distribution of HCoVs, there is limited information on their presence and distribution in Kenya. METHODS: HCoV strains that circulated in Kenya were retrospectively diagnosed and molecularly characterized. A total of 417 nasopharyngeal specimens obtained between January 2009 and December 2012 from around Kenya were analyzed by a real time RT-PCR using HCoV-specific primers. HCoV-positive specimens were subsequently inoculated onto monolayers of LL-CMK2 cells. The isolated viruses were characterized by RT-PCR amplification and sequencing of the partial polymerase (pol) gene. RESULTS: The prevalence of HCoV infection was as follows: out of the 417 specimens, 35 (8.4 %) were positive for HCoV, comprising 10 (2.4 %) HCoV-NL63, 12 (2.9 %) HCoV-OC43, 9 (2.1 %) HCoV-HKU1, and 4 (1 %) HCoV-229E. The Kenyan HCoV strains displayed high sequence homology to the prototypes and contemporaneous strains. Evolution analysis showed that the Kenyan HCoV-OC43 and HCoV-NL63 isolates were under purifying selection. Phylogenetic evolutionary analyses confirmed the identities of three HCoV-HKU1, five HCoV-NL63, eight HCoV-OC43 and three HCoV-229E. CONCLUSIONS: There were yearly variations in the prevalence and circulation patterns of individual HCoVs in Kenya. This paper reports on the first molecular characterization of human Coronaviruses in Kenya, which play an important role in causing acute respiratory infections among children.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Coronavirus/classificação , Coronavirus/genética , Coronavirus/isolamento & purificação , Infecções por Coronavirus/história , Genes pol , História do Século XXI , Humanos , Quênia/epidemiologia , Filogenia , Vigilância da População , Prevalência , RNA Viral
10.
Antimicrob Agents Chemother ; 59(3): 1818-21, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25583715

RESUMO

The prevalence of a genetic polymorphism(s) at codon 268 in the cytochrome b gene, which is associated with failure of atovaquone-proguanil treatment, was analyzed in 227 Plasmodium falciparum parasites from western Kenya. The prevalence of the wild-type allele was 63%, and that of the Y268S (denoting a Y-to-S change at position 268) mutant allele was 2%. There were no pure Y268C or Y268N mutant alleles, only mixtures of a mutant allele(s) with the wild type. There was a correlation between parasite 50% inhibitory concentration (IC50) and parasite genetic polymorphism; mutant alleles had higher IC50s than the wild type.


Assuntos
Antimaláricos/farmacologia , Atovaquona/farmacologia , Citocromos b/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Alelos , Códon/genética , DNA de Protozoário/genética , Combinação de Medicamentos , Quênia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Testes de Sensibilidade Microbiana/métodos , Mutação/genética , Polimorfismo Genético/genética , Proguanil/farmacologia , Proteínas de Protozoários/genética
11.
Malar J ; 13: 485, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25495235

RESUMO

BACKGROUND: Multispectral imaging microscopy is a novel microscopic technique that integrates spectroscopy with optical imaging to record both spectral and spatial information of a specimen. This enables acquisition of a large and more informative dataset than is achievable in conventional optical microscopy. However, such data are characterized by high signal correlation and are difficult to interpret using univariate data analysis techniques. METHODS: In this work, the development and application of a novel method which uses principal component analysis (PCA) in the processing of spectral images obtained from a simple multispectral-multimodal imaging microscope to detect Plasmodium parasites in unstained thin blood smear for malaria diagnostics is reported. The optical microscope used in this work has been modified by replacing the broadband light source (tungsten halogen lamp) with a set of light emitting diodes (LEDs) emitting thirteen different wavelengths of monochromatic light in the UV-vis-NIR range. The LEDs are activated sequentially to illuminate same spot of the unstained thin blood smears on glass slides, and grey level images are recorded at each wavelength. PCA was used to perform data dimensionality reduction and to enhance score images for visualization as well as for feature extraction through clusters in score space. RESULTS: Using this approach, haemozoin was uniquely distinguished from haemoglobin in unstained thin blood smears on glass slides and the 590-700 spectral range identified as an important band for optical imaging of haemozoin as a biomarker for malaria diagnosis. CONCLUSION: This work is of great significance in reducing the time spent on staining malaria specimens and thus drastically reducing diagnosis time duration. The approach has the potential of replacing a trained human eye with a trained computerized vision system for malaria parasite blood screening.


Assuntos
Sangue/parasitologia , Técnicas de Laboratório Clínico/métodos , Processamento de Imagem Assistida por Computador/métodos , Malária/diagnóstico , Microscopia/métodos , Plasmodium/química , Plasmodium/citologia , Humanos , Imagem Óptica/métodos , Análise de Componente Principal , Análise Espacial , Análise Espectral/métodos
12.
PLoS One ; 9(7): e102866, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054861

RESUMO

Reports of increasing worldwide circulation of human enterovirus-68 (EV68) are well documented. Despite health concerns posed by resurgence of these viruses, little is known about EV68 strains circulating in Kenya. In this study, we characterized 13 EV68 strains isolated in Kenya between 2008 and 2011 based on the Hypervariable 3'-end of the VP1 gene. Viral RNA was extracted from the isolates and partial VP1 gene amplified by RT-PCR, followed by nucleotide sequencing. Alignment of deduced amino acid sequences revealed substitutions in Kenyan EV68 isolates absent in the prototype reference strain (Fermon). The majority of these changes were present in the BC and DE-loop regions, which are associated with viral antigenicity and virulence. The Kenyan strains exhibited high sequence homology with respect to those from other countries. Natural selection analysis based on the VP1 region showed that the Kenyan EV68 isolates were under purifying selection. Phylogenetic analysis revealed that majority (84.6%) of the Kenyan strains belonged to clade A, while a minority belonged to clades B and C. Overall, our results illustrate that although EV68 strains isolated in Kenya were genetically and antigenically divergent from the prototype strain (Fermon), they were closely related to those circulating in other countries, suggesting worldwide transmissibility. Further, the presence of shared mutations by Kenyan EV68 strains and those isolated in other countries, indicates evolution in the VP1 region may be contributing to increased worldwide detection of the viruses. This is the first study to document circulation of EV68 in Kenya.


Assuntos
Proteínas do Capsídeo/genética , Enterovirus Humano D/genética , Infecções por Enterovirus/virologia , Variação Genética , Sequência de Aminoácidos , Criança , Pré-Escolar , DNA Complementar/química , DNA Complementar/genética , Enterovirus Humano D/classificação , Enterovirus Humano D/isolamento & purificação , Feminino , Humanos , Lactente , Quênia , Masculino , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
13.
Malar J ; 13: 250, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24989984

RESUMO

BACKGROUND: Sulphadoxine-pyrimethamine (SP), an antifolate, was replaced by artemether-lumefantrine as the first-line malaria drug treatment in Kenya in 2004 due to the wide spread of resistance. However, SP still remains the recommended drug for intermittent preventive treatment in pregnant women and infants (IPTP/I) owing to its safety profile. This study assessed the prevalence of mutations in dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes associated with SP resistance in samples collected in Kenya between 2008 and 2012. METHODS: Field isolates collected from Kisumu, Kisii, Kericho and Malindi district hospitals were assessed for genetic polymorphism at various loci within Pfdhfr and Pfdhps genes by sequencing. RESULTS: Among the Pfdhfr mutations, codons N51I, C59R, S108N showed highest prevalence in all the field sites at 95.5%, 84.1% and 98.6% respectively. Pfdhfr S108N prevalence was highest in Kisii at 100%. A temporal trend analysis showed steady prevalence of mutations over time except for codon Pfdhps 581 which showed an increase in mixed genotypes. Triple Pfdhfr N51I/C59R/S108N and double Pfdhps A437G/ K540E had high prevalence rates of 86.6% and 87.9% respectively. The Pfdhfr/Pfdhps quintuple, N51I/C59R/S108N/A437G/K540E mutant which has been shown to be the most clinically relevant marker for SP resistance was observed in 75.7% of the samples. CONCLUSION: SP resistance is still persistently high in western Kenya, which is likely due to fixation of key mutations in the Pfdhfr and Pfdhps genes as well as drug pressure from other antifolate drugs being used for the treatment of malaria and other infections. In addition, there is emergence and increasing prevalence of new mutations in Kenyan parasite population. Since SP is used for IPTP/I, molecular surveillance and in vitro susceptibility assays must be sustained to provide information on the emergence and spread of SP resistance.


Assuntos
Antimaláricos/farmacologia , Di-Hidropteroato Sintase/genética , Resistência a Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Tetra-Hidrofolato Desidrogenase/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Quênia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Polimorfismo Genético , Gravidez , Análise de Sequência de DNA , Adulto Jovem
14.
Antimicrob Agents Chemother ; 58(7): 3737-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24752268

RESUMO

In combination with antibiotics, quinine is recommended as the second-line treatment for uncomplicated malaria, an alternative first-line treatment for severe malaria, and for treatment of malaria in the first trimester of pregnancy. Quinine has been shown to have frequent clinical failures, and yet the mechanisms of action and resistance have not been fully elucidated. However, resistance is linked to polymorphisms in multiple genes, including multidrug resistance 1 (Pfmdr1), the chloroquine resistance transporter (Pfcrt), and the sodium/hydrogen exchanger gene (Pfnhe1). Here, we investigated the association between in vitro quinine susceptibility and genetic polymorphisms in Pfmdr1codons 86 and 184, Pfcrt codon 76, and Pfnhe1 ms4760 in 88 field isolates from western Kenya. In vitro activity was assessed based on the drug concentration that inhibited 50% of parasite growth (the IC50), and parasite genetic polymorphisms were determined from DNA sequencing. Data revealed there were significant associations between polymorphism in Pfmdr1-86Y, Pfmdr1-184F, or Pfcrt-76T and quinine susceptibility (P < 0.0001 for all three associations). Eighty-two percent of parasites resistant to quinine carried mutant alleles at these codons (Pfmdr1-86Y, Pfmdr1-184F, and Pfcrt-76T), whereas 74% of parasites susceptible to quinine carried the wild-type allele (Pfmdr1-N86, Pfmdr1-Y184, and Pfcrt-K76, respectively). In addition, quinine IC50 values for parasites with Pfnhe1 ms4760 3 DNNND repeats were significantly higher than for those with 1 or 2 repeats (P = 0.033 and P = 0.0043, respectively). Clinical efficacy studies are now required to confirm the validity of these markers and the importance of parasite genetic background.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Genes de Protozoários/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/genética , Quinina/farmacologia , Trocadores de Sódio-Hidrogênio/genética , Alelos , Animais , DNA de Protozoário/genética , Genes de Protozoários/fisiologia , Genótipo , Humanos , Quênia , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/fisiologia , Repetições de Microssatélites , Dados de Sequência Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Testes de Sensibilidade Parasitária , Polimorfismo Genético/genética , Proteínas de Protozoários/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia
15.
Virus Genes ; 47(3): 439-47, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23955068

RESUMO

Human parainfluenza virus type 1 (HPIV-1), a paramyxovirus, is a leading cause of pediatric respiratory hospitalizations globally. Currently, there is no clinically successful vaccine against HPIV-1. Hence, there is a need to characterize circulating strains of this virus to establish the feasibility of developing a vaccine against the virus. The variable HPIV-1 hemagglutin-neuraminidase (HN) protein is found in the envelope of HPIV-1, where it initiates the infection process by binding to cellular receptors. HN is also the major antigen against which the human immune response is directed against. The present study focused on identifying mutations in the HN gene that would be useful in understanding the evolution of HPIV-1. 21 HPIV-1 isolates were obtained after screening nasopharyngeal samples from patients with influenza-like illness. The samples were collected from Mbagathi District Hospital Nairobi from the period July 2007 to December 2010. RT-PCR was carried out on the isolates using HN-specific primers to amplify a 360 nt in the most polymorphic region and the amplicons sequenced. Genomic data were analysed using a suite of bioinformatic software. Forty eight polymorphic sites with a total of 55 mutations were identified at the nucleotide level and 47 mutations at 23 positions at the amino acid level. There was more radical nonsynonymous amino acid changes (seven positions) observed than conservative nonsynonymous changes (one position) on the HN gene fragment. No positively selected sites were found in the HN protein. The result from the analysis of 21 HPIV-1 Mbagathi isolates demonstrated that the HN gene which is the major antigenic target was under purifying (negative) selection displaying evolutionary stasis.


Assuntos
Vírus da Parainfluenza 1 Humana/genética , Vírus da Parainfluenza 1 Humana/isolamento & purificação , Infecções por Respirovirus/virologia , Sequência de Bases , Pré-Escolar , Feminino , Hospitais de Distrito , Humanos , Lactente , Quênia , Dados de Sequência Molecular , Vírus da Parainfluenza 1 Humana/classificação , Filogenia , Estudos Retrospectivos
16.
J Infect Dis ; 206 Suppl 1: S68-73, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23169975

RESUMO

BACKGROUND: The US Army Medical Research Unit-Kenya (USAMRU-K) conducts surveillance for influenza-like illness (ILI) in Kenya. We describe the temporal and geographic progression of A(H1N1)pdm09 as it emerged in Kenya and characterize the outpatient population with A(H1N1)pdm09 infection. METHODS: We included patients with ILI aged 2 months to 18 years enrolled during June 2009-August 2010. Respiratory specimens were tested by real-time reverse-transcription polymerase chain reaction for influenza virus. Patients with A(H1N1)pdm09 infection were compared to those with seasonal influenza A virus infection and those with ILI who had no virus or a virus other than influenza virus identified (hereafter, "noninfluenza ILI"). RESULTS: Of 4251 patients with ILI, 193 had laboratory-confirmed A(H1N1)pdm09 infection. The first pandemic influenza case detected by USAMRU-K surveillance was in August 2009; peak activity nationwide occurred during October-November 2009. Patients with A(H1N1)pdm09 infection were more likely to be school-aged, compared with patients with seasonal influenza A virus infection (prevalence ratio [PR], 2.0; 95% confidence interval [CI], 1.3-3.1) or noninfluenza ILI (PR, 3.2; 95% CI, 2.4-4.3). CONCLUSIONS: USAMRU-K ILI surveillance detected the geographic and temporal distribution of pandemic influenza in Kenya. The age distribution of A(H1N1)pdm09 infections included more school-aged children, compared with seasonal influenza A virus infection and noninfluenza ILI.


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Adolescente , Distribuição por Idade , Secreções Corporais/virologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Influenza Humana/patologia , Quênia/epidemiologia , Masculino , Prevalência , Sistema Respiratório/virologia , Fatores de Tempo , Topografia Médica
17.
J Infect Dis ; 206 Suppl 1: S46-52, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23169971

RESUMO

BACKGROUND: Among influenza viruses, type A viruses exhibit the greatest genetic diversity, infect the widest range of host species, and cause the vast majority of cases of severe disease in humans, including cases during the great pandemics. The hemagglutinin 1 (HA1) domain of the HA protein contains the highest concentration of epitopes and, correspondingly, experiences the most intense positive selection pressure. OBJECTIVES: We sought to isolate and genetically characterize influenza A virus subtype H1N1 (A[H1N1]) circulating in Kenya during 2007-2008, using the HA1 protein. METHODS: Nasopharyngeal swab specimens were collected from patients aged ≥ 2 months who presented to 8 healthcare facilities in Kenya with influenza-like illness. We tested specimens for seasonal influenza A viruses, using real-time reverse-transcription polymerase chain reaction (RT-PCR). Viruses were subtyped using subtype-specific primers. Specimens positive for seasonal A(H1N1) were inoculated onto Madin-Darby canine kidney cells for virus isolation. Viral RNAs were extracted from isolates, and the HA1 gene was amplified by RT-PCR, followed by nucleotide sequencing. Nucleotide sequences were assembled using BioEdit and translated into amino acid codes, using DS Gene, version 1.5. Multiple sequence alignments were performed using MUSCLE, version 3.6, and phylogenetic analysis was performed using MrBayes software. RESULTS: We found that, similar to A/Brisbane/59/2007 (H1N1)-like virus, which was included in the southern hemisphere vaccine for the 2009 influenza season, all 2007 Kenyan viruses had D39N, R77K, T132V, K149R, and E277K amino acid substitutions, compared with A/Solomon Islands/3/2006 (H1N1)-like virus, a component of the southern hemisphere vaccine for the 2008 influenza season. However, the majority of 2008 viruses from Kenya also had R192K and R226Q substitutions, compared with A/Solomon Islands/3/2006 (H1N1)-like virus. These 2 changes occurred at the receptor binding site. The majority of the 2008 Kenyan isolates contained N187S, G189N, and A193T mutations, which differed from A/Brisbane/59/2007 (H1N1)-like virus. The A193T substitution is involved in binding the sialic acid receptor. Phylogenetically, the 2008 Kenyan isolates grouped into 2 clusters. The main cluster contained viruses with N187S and A193T changes; residue 187 is involved in receptor binding, whereas residue 193 is at antigenic site Sb. CONCLUSION: Overall, the major genetic variations that occurred in seasonal A(H1) viruses either affected receptor binding or altered epitopes at the immunodominant sites. These genetic variations in seasonal A(H1N1) isolated in Kenya during 2007-2008 highlight the importance of continuing surveillance and characterization of emerging drift variants of influenza virus in Africa.


Assuntos
Variação Genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Filogenia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Vírus da Influenza A Subtipo H1N1/classificação , Quênia/epidemiologia , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Dados de Sequência Molecular , Nasofaringe/virologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Cultura de Vírus , Adulto Jovem
18.
BMC Public Health ; 11 Suppl 2: S4, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21388564

RESUMO

Capacity-building initiatives related to public health are defined as developing laboratory infrastructure, strengthening host-country disease surveillance initiatives, transferring technical expertise and training personnel. These initiatives represented a major piece of the Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) contributions to worldwide emerging infectious disease (EID) surveillance and response. Capacity-building initiatives were undertaken with over 80 local and regional Ministries of Health, Agriculture and Defense, as well as other government entities and institutions worldwide. The efforts supported at least 52 national influenza centers and other country-specific influenza, regional and U.S.-based EID reference laboratories (44 civilian, eight military) in 46 countries worldwide. Equally important, reference testing, laboratory infrastructure and equipment support was provided to over 500 field sites in 74 countries worldwide from October 2008 to September 2009. These activities allowed countries to better meet the milestones of implementation of the 2005 International Health Regulations and complemented many initiatives undertaken by other U.S. government agencies, such as the U.S. Department of Health and Human Services, the U.S. Agency for International Development and the U.S. Department of State.


Assuntos
Influenza Humana/epidemiologia , Militares , Saúde Pública , Infecções Respiratórias/epidemiologia , Vigilância de Evento Sentinela , Saúde Global , Órgãos Governamentais , Humanos , Cooperação Internacional , Laboratórios , Estados Unidos
19.
Am J Trop Med Hyg ; 81(6): 1110-3, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19996445

RESUMO

Mycobacterium ulcerans infection is an emerging disease that causes indolent, necrotizing skin lesions known as Buruli ulcer (BU) and occasional contiguous or metastatic bone lesions. Buruli ulcer is named after Buruli County in Uganda (east Africa), where an epidemic occurred in the 1960s. Today, BU is most common in central and west Africa. We describe clinical and molecular evidence for a case of BU in Kenya.


Assuntos
Úlcera de Buruli/diagnóstico , Mycobacterium ulcerans/isolamento & purificação , Adulto , Sequência de Bases , Úlcera de Buruli/epidemiologia , Úlcera de Buruli/patologia , DNA Bacteriano/genética , Feminino , Humanos , Quênia/epidemiologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
20.
Influenza Other Respir Viruses ; 2(3): 107-13, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-19453470

RESUMO

BACKGROUND: Minimal influenza surveillance has been carried out in sub-Saharan Africa to provide information on circulating influenza subtypes for the purpose of vaccine production and monitoring trends in virus spread and mutations. OBJECTIVE: The aim of this study was to investigate a surveillance program in Kenya to isolate and characterize influenza viruses. RESULTS: In the 2006-2007 influenza season, nine influenza A viruses were isolated. All were of H3N2 subtype with key amino acid (aa) changes indicating that they were more closely related to recent World Health Organization recommended vaccine strains than to older vaccine strains, and mirroring the evolution of circulating influenza A globally. Hemagglutination inhibition data showed that the 2006 Kenya isolates had titers identical to the 2005-2006 H3N2 vaccine strain but two- to threefold lower titers to the 2006-2007 vaccine strain, suggesting that the isolates were antigenic variants of the 2006-2007 vaccine strains. Analysis of aa substitutions of hemagglutinin-1 (HA1) protein of the 2006 Kenyan viruses revealed unique genetic variations with several aa substitutions located at immunodominant epitopes of the HA1 protein. These mutations included the V112I change at site E, the K 173 E substitution at site D and N 278 K change at site C, mutations that may result in conformational change on the HA molecule to expose novel epitopes thus abrogating binding of pre-existing antibodies at these sites. CONCLUSION: Characterization of these important genetic variations in influenza A viruses isolated from Kenya highlights the importance of continuing surveillance and characterization of emerging influenza drift variants in sub-Saharan Africa.


Assuntos
Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/virologia , Adolescente , Adulto , Sequência de Aminoácidos , Anticorpos Antivirais/sangue , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Lactente , Vírus da Influenza A Subtipo H3N2/imunologia , Quênia , Masculino , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...